Denoising random forests
نویسندگان
چکیده
This paper proposes a novel type of random forests called a denoising random forests that are robust against noises contained in test samples. Such noise-corrupted samples cause serious damage to the estimation performances of random forests, since unexpected child nodes are often selected and the leaf nodes that the input sample reaches are sometimes far from those for a clean sample. Our main idea for tackling this problem originates from a binary indicator vector that encodes a traversal path of a sample in the forest. Our proposed method effectively employs this vector by introducing denoising autoencoders into random forests. A denoising autoencoder can be trained with indicator vectors produced from clean and noisy input samples, and non-leaf nodes where incorrect decisions are made can be identified by comparing the input and output of the trained denoising autoencoder. Multiple traversal paths with respect to the nodes with incorrect decisions caused by the noises can then be considered for the estimation.
منابع مشابه
Semi-Supervised Learning of the Electronic Health Record with Denoising Autoencoders for Phenotype Stratification
Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs were built for clinical and billing purposes but contain many data points about an individual. Mining these records provides opportunities to extract electronic phenotypes that can be paired with genetic data to identify genes underlying common human diseases. This task remains challengin...
متن کاملCombining Stacked Denoising Autoencoders and Random Forests for Face Detection
Detecting faces in the wild is a challenging problem due to large visual variations introduced by uncontrolled facial expressions, head pose, illumination and so on. Employing strong classifier and designing more discriminative visual features are two main approaches to overcoming such difficulties. Notably, Deep Neural Network (DNN) based methods have been found to outperform most traditional ...
متن کاملEndocardial 3D Ultrasound Segmentation using Autocontext Random Forests
In this paper, we present the use of a generic image segmentation method, namely a succession of Random Forest classifiers in an autocontext framework, for the MICCAI 2014 Challenge on Endocardial 3D Ultrasound Segmentation (CETUS). The proposed method segments each frame independently in 90 sec, without requiring temporal information such as end-diastolic or end-systolic time points nor any re...
متن کاملSemi-supervised learning of the electronic health record for phenotype stratification
Patient interactions with health care providers result in entries to electronic health records (EHRs). EHRs were built for clinical and billing purposes but contain many data points about an individual. Mining these records provides opportunities to extract electronic phenotypes, which can be paired with genetic data to identify genes underlying common human diseases. This task remains challeng...
متن کاملInteractive Texture Segmentation using Random Forests and Total Variation
Common methods for interactive texture segmentation rely on probability maps based on low dimensional features such as e.g. intensity or color, that are usually modeled using basic learning algorithms such as histograms or Gaussian Mixture Models. The use of low level features allows for fast generation of these hypotheses but limits applicability to a small class of images. We address this pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.11004 شماره
صفحات -
تاریخ انتشار 2017